Welcome to Components-Shop.com
English

Select Language

  1. English
  2. Deutsch
  3. Italia
  4. Slovenská
  5. Français
  6. Svenska
  7. čeština
  8. Dansk
  9. Magyarország
  10. Türk dili
  11. español
  12. Português
  13. 한국의
  14. Gaeilge
  15. Suomi
  16. Slovenija
  17. Nederland
  18. Hrvatska
  19. Български език
  20. românesc
  21. ภาษาไทย
  22. Kongeriket
  23. tiếng Việt
Cancel
RFQs / Order
Part No. Manufacturer Qty  
Home > News > Imec fabs ring oscillator using GAA nanowire transistors

Imec fabs ring oscillator using GAA nanowire transistors

IMG_1246

The demonstrator shows the enormous promise this technology holds for realizing sub-5nm technology nodes.
Gate-all-around (GAA) MOSFETs based on vertically stacked horizontal nanowires or nanosheets are promising candidates to succeed FinFETs in sub-5nm technology nodes, thus extending today’s CMOS technology beyond its scaling limits.

This innnovative transistor architecture offers a more aggressive gate pitch scaling than FinFETs because it achieves a better electrostatic control. Moreover, in very scaled standard cells where only one fin device is allowed, nanosheets provide more current per footprint than fins, and thus can drive higher capacitive loads. Finally, integrating nanosheet devices with variable widths in a single platform enables power/performance optimization with high granularity.
As with every disruptive innovation, this new architecture demands for process optimizations, and a team of researchers from Imec and Applied Materials have demonstrated multiple optimizations for the fabrication of stacked silicon nanowire and nanosheet FETs.

The first process optimization is the implementation of a SiN Shallow Trench Isolation (STI) liners which suppresses oxidation-induced fin deformation and improves the shape control of the nanowire or nanosheet.

Secondly, Selectra etch was used to enable nanowire/nanosheet release and inner spacer cavity formation with high selectivity and without causing silicon reflow. Finally, for the first time, ring oscillator circuits were reported based on stacked silicon nanowire FETs, including dual work function metal gates for threshold voltage control.
Imec has also presented a study on the reliability of GAA nanowires showing that the degradation mechanisms and their origins are similar as the one in planar devices.

The modelling of the degradation including various channel hot-carrier (CHC) modes as well as positive bias temperature instability (PBTI) allows an extrapolation to 10-years lifetime in the full bias space.

The obtained safe operation area (SOA) was used to optimize device operation. An extra degradation mechanism that must be taken into account is self-heating, which is very important in such confined structures.

Finally, in a study on ESD diodes in sub-7nm GAA nanowire technology nodes, imec proved that the diodes performance is significantly impacted by some of the process options and that optimizations are needed, such as a wrap around contact (WAC) which can increase contact area in a scaled fin pitch and can be combined with GAA.